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0(4,2) Operator Replacements: Geometrical 
Interpretation 
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Received July 19, 1995 

The method of o(4,2) operator replacements relies upon a particular realization 
of the 0(4,2) Lie algebra in terms of position and momentum operators, involving 
a free dimensionless parameter 13. The geometrical significance of the operator 
replacements is given. The momentum space becomes a three-dimensional sphere 
of radius [exp(13)]/2 (atomic units) embedded in a four-dimensional Euclidean 
space. A much simpler realization of the replaced operators is obtained. 

1. INTRODUCTION 

The recently introduced method of 0(4,2) operator replacements (de 
Prunelr, 1992) is aimed at solving the Schr0dinger equation. This equation 
is replaced by another equation involving a free dimensionless parameter 13. 
For finite 13 values, the replaced equation can be studied using only a discrete 
representation of 0(4,2). The solutions of the replaced equation are expected 
to converge to the solutions of the initial Schrrdinger equation when 13 ---> 
+oo. This method appears to be particularly attractive for studying the three- 
body Coulomb problem since the energies appear as analytical functions of 
exp(13). An analytical continuation from the exactly solvable limit 13 ---> -oo 
to the physical limit 13 ---> +oo has been performed recently for the triplet S 
lowest energy of helium (Ivanov and de Prunelr, 1994). This provides a 
purely nonvariational approach. The present paper is mainly devoted to a 
better understanding of the method by emphasizing the geometrical aspects. 
The simplicity of the realization of the operator replacements obtained in 
this paper [equations (2.30)-(2.35), (2.14)-(2.17), (2.24), (2.12)] should be 
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contrasted with the complexity of the initial realization [equations (1.18)- 
(1.23), (1.1)-(1.7)]. 

The method of 0(4,2) operator replacements can be briefly summarized 
as follows. The starting point is the following realization of the 0(4,2) algebra 
in terms of the position and momentum operators (see, e.g., Barut and Kleinert, 
1967; Fronsdal, 1967; Nambu, 1967): 

a(13) = exp(-13)[�89 2 - p ( r .p) ]  -�89 r (1.1) 

i =- r x p (1.2)  

t2 =- rpr = r . p  - i (1.3) 

b(13) - a(13) + exp(13)r (1.4) 

g =-- rp (1.5)  

h(13) -- r[exp(-13)P 2 - exp(13)]/2 (1.6) 

t3(13) -= r[exp(-13)p 2 + exp(13)]/2 (1.7) 

Atomic units are used. It is clear that we have an 0(4,2) Lie algebra if 
the commutation relations are written as 

i[Mw~, Mp,~] = g ~ p M ~  + g ~ M ~ p  - g~,~Mi, p - gt, pM~,~ (1.8) 

with the diagonal g matrix defined by 

gll = gz2 : g33 ~- g44 = --g55 = --g66 = 1 (1.9) 
and the correspondence between the antisymmetric matrix M~, and the opera- 
tors of equations (1.1)-(1.7) given by 

1 2 3 4 5 6 

i (0 13--12 al bl gl) 
0 Ii a2 b2 g2 

M~, = 0 a3 b3 g3 
0 t2 tl 

0 
6-- 

(1.1o) 

with Ix the index of rows and v the index of columns. The dependence on 
the dimensionless parameter 13 corresponds to a similarity transformation. 
Specifically, if u(13) is any one among the 15 generators, 

u(13) = exp(i13t2) u(0) exp(-i13t2) (1.11) 

Given a Hamiltonian H which can be expressed in terms of the operators r, 
p, I, r/r, r, p2, and Pr, one considers an alternative Hamiltonian H(13) which 
is obtained from H by the following 0(4,2) operator replacements: 
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r -o 2 exp(-13)t3(13) 

r ---> - 2  exp(-13)a(13) 

exp(13) t3,(13)g 
P ~  

p2 __~ exp(213) [t;l(13)tl(13) + 
2 

(1.12) 

(1.13) 

(1.14) 

l] (1.15) 

r 
- ~ t3~(13)b(l 3) (1.16) 
r 

exp(13) 
pr---~---~-----t;l(13)t2 (1.17) 

It is clear that the replacements can be done in several ways. For example, 
the result is different if one starts from p2 or from p" p. The physical results, 
corresponding to the limit where 13 ---> +0% are, however, expected to be 
identical. In practice, the choices are determined by the criterion of simplicity. 
Simplicity means here that the replaced operators should be as diagonal as 
possible in the basis introduced in Section 2. A more symmetric form of 
these replacements, which leads to Hermitian operators with respect to the 
1/r scalar product, is obtained if in the replaced Schrrdinger equation [H(13) 
- E(13)]lxtr(13)) -- 0, IX t r!13)) is ch~_~gKd into t,,/t~lxtr(13)) and, accordingly, 
H(13) is changed into H (13) ------ x/t3(13)H(13)/x/t3(13). The symmetric form of 
the o(4,2) operator replacements is thus 

r --~ 2 exp(-13)t3(13) = r([3) 

r ~ - 2  exp(-13)a([3) ~ ~(13) 

P --> exp(13) 1 1 g - 

p2__ exp(213)[ t ~ ( ~ )  1 t1(13) 

- - -~  b ( 1 3 )  - -  (13) 
r ~ 

( 1 . 1 8 )  

(l.19) 

(1.20) 

+ 1] --= p'~(13) (1.21) 

(1.22) 

Pr "--~ exp(13) 1 1 2 ~ t2 ~ -- pal  S) (1.23) 

The tilde denote replaced operators. [For typographical convenience, we have 
written (F/r)(f3) in equation (1.22) in place of the more correct but cumbersome 
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notation (r/r)(13). This will be retained in the sequel.] The operator replace- 
ments given by equations (1.12)-(1.15) or (l.18)-(1.21) were proposed 
recently (de Prunelr, 1992). The replacements given by equations (1.16)- 
(1.17) or (1.22)-( 1.23) are new. The explicit choices of the operator replace- 
ments are motivated first by the requirement that the spectra of the replaced 
operators "converge" in some sense to the spectra of the original operators 
in the limit 13 ~ +m. The two spectra can, however, be different. For example, 
the spectrum of ?(13) is a pure point spectrum with eigenvalues 2 exp(-13)n 
(n integer greater than or equal to one), and the spectrum of r, which is 
continuous, is the positive real line. It is clear, however, that in the limit 
13 ---> + ~  every point of the real line can be approached arbitrarily closely 
by an eigenvalue of ?(13). It is conjectured that, when the initial operator is 
the sum of a kinetic part and a potential part, the two spectra are identical. 
This has been proved for the case of an atomic hydrogenic Hamiltonian and 
verified numerically for some eigenvalues of the helium atom (de Prunel4, 
1992). The second motivation is that numerous commutation relations remain 
unchanged for all 13 values. This can be seen by comparing the following 
two matrices, whose j, k entry is the commutator of the operators at the 
beginning of linej and top of column k (The calculation of all these commuta- 
tors is laborious, but relies only upon the basic commutators [rj, PK] = iSjk, 
[rj, rk] = [pj, Pk] = 0): 

lj 
rj 

rjlr 

Pj 
r 

pZ 

Pr 

lk rk rk/r 

ieJkllt ieJktrt ieJktrt/r 

0 0 
0 

PK r p2 Pr 

ieJktpl 0 0 0 
i~jk 0 2ipj i r / r  

* 0 * 0 
0 - i r / r  0 * 

0 2ipr i 
0 * 

0 

(1.24) 
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~(13) 

~1~) 

;,,(13~ 

ieIU/t ie/upt(~) ie,U (--)rtr (~) ieiu~(~) 0 0 0 

. 
0 i ": pl(13) * 0 

0 . o - i  (13) 

0 * 

J 

( 1 . 2 5 )  

with z -- exp(13). Those commutators that cannot be expressed as a linear 
combination of the operators lying at the top or left of the matrices are 
represented by a star. One notices in particular that the components of 
(?/r)(13) commute, which motivates the choice of the replacement (1.22) in 
place of the replacement 

_ 1 1 
r (13) --~ - - -  a(13) 
r ~ 

which could appear more natural in view of equations (1.18), (1.19) but 
whose components do not commute. 

An essential point to be emphasized first is that the operator replacements 
break the symmetry between configuration space and momentum space. 
Indeed, whereas it is meaningful to speak of replaced momentum space 
because the operators pj(13) commute, one cannot ascribe to the operators 
rj(13) a configuration space in the usual sense, because the do not commute. 

Comparison of matrix (1.25) with the matrix (1.24) also shows that in 
most cases the commutation relations given by the matrix (1.24) are exactly 
preserved by the matrix (1.25). One observes also a so-called group contrac- 
tion (Inonu and Wigner, 1953): the 0(4) algebra spanned by !, F(13) [matrix 
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(1.25)] contracts as 13 ~ +oo to the algebra of the group of displacements 
in momentum space spanned by I, r [matrix (1.24)]. 

The main purpose of the present paper is to give a geometrical interpreta- 
tion of the replaced operators. This is done in Section 2. The equivalent 
form of the operator replacements obtained in equations (2.30)-(2.35) below 
appears to be simpler than the original form [equations (l.18)-(1.23)] and 
some of the properties of the replaced operators thus appear to be transparent. 
The essential result is that the momentum space becomes a compact space, 
specifically a three-dimensional sphere of radius [exp(13)]/2 in a four-dimen- 
sional Euclidean space. A distinction from Fock's treatment of the hydrogen 
atom (Fock, 1935) should be noticed. Fock used the stereographic projection 
of the three-dimensional Euclidean momentum space onto a hypersphere as 
an energy-dependent change of variables. In the present approach, the points 
of the hypersphere a r e  the points of the replaced momentum space. 

This paper has three appendices. The spectral properties of the replaced 
kinetic operator are determined in Appendix A. Appendix B illustrates 
how the operator replacements yield the correct result for the matrix 
elements between r and p in the limit where 13 --~ +~.  Finally, Appendix 
C is not properly concerned with the operator replacements, but rather 
with the geometrical interpretation of some of the building blocks of the 
replaced operators: it is shown that the exponential of an arbitrary element 
of the Lie algebra 0(4, l) spanned by r = exp(-13)[b(13) - a(13)], I, t2, 
a(13) acts on a dimensionless function t ip )  as the exponential of a generator 
t,f a conformal transformation would act on a function t ip )  which has 
the dimension of [momentum] -2. It is of course well known that r = 
b(0) - a(0), !, t2 are related to the generators of translations, rotations, 
and global scale changes in momentum space. The geometric significance 
of a(0) seems to be less well known. One usually attributes to a(0) a 
geometrical significance by noting that it corresponds to the reduced Runge 
Lenz vector for the ground state of the hydrogen atom. The geometrical 
interpretation is then obtained by using a Fock change of variables (Fock, 
1935), i.e., an energy-dependent stereographic projection, and a(0) appears 
to be related to the generators of rotations in the planes containing the 
fourth dimension. We believe that it is also useful to give a purely 
geometrical interpretation, as done in Appendix A, without any reference 
to the hydrogenic Hamiltonian. 

2. THE REPLACED OPERATORS: THE MOMENTUM SPACE 
AS A THREE-DIMENSIONAL SPHERE EMBEDDED IN A 
FOUR-DIMENSIONAL SPACE 

The 15 operators given by equations (1.1)-(1.7) acting in the Hilbert 
space spanned by the so-called Sturmian functions realize a discrete unitary 
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irreducible representation of  0(4,  2) (see, e.g., Adams et  al. ,  1988). Each 
vector of  this orthonormal basis of  Sturmian functions is characterized by 
three integers, 1 -< n < ~,  0 -< l -< n - 1, - 1  -< m -< l, and the real number 
13, which characterizes the length scale. We consider an abstract separable 
Hilbert space spanned by the orthonormal basis In, l, m, 13). The vectors of  
this Hilbert space are the vectors 1~(13)) = ~n.t.,, c~.t,,, In, l, m,  13) for which 
~,n.l.m I r I 2 converges. It is clear that the action of any 13-dependent generator 
in the 13-dependent basis is in fact 13 independent, since, corresponding to 
the similarity transformation of  equation (1.11), one has In, l, m, [3) - 
exp(i[3t2) In, l, m). Thus we shall now suppress the 13 dependence in both  
the generators and basis vectors. The 15 generators of  0(4, 2) [equations 
(1.1)-(1.7)] can be defined equivalently by the following equations (see, e.g., 
Adams et  al. ,  1988): 

l •  l, rn) = c(+_m, l ) ln ,  l, m -4- 1) (2.1) 

t• ln, 1, m )  = c(l ,  ~ n ) l n  +_ 1, l, m) (2.2) 

a31n, l, rn) = [(1 - m)( l  + m)]tndTln, l - 1, m) 

+ [ ( l -  m + 1 ) ( /+  m + l ) ] lndT+l ln ,  l +  l , m )  (2.3) 

with 

c(a,  b)  --  [(b + a + l)(b - a)] 1/2 (2.4) 

d? - [(//2 _ 12)/(4l 2 _ 1)]1/2 (2.5) 

u• - ut +- iu2 (2.6) 

and from the commutation relations given by equations ( l .8) - ( l . lO) .  In 
particular, one notices that the basis vectors are eigenvectors of  t3 with 
eigenvalues n: 

t3 In, l, m) = n In, 1, m) (2.7) 

From now. on we take the viewpoint that the above actions of the 
generators [equations (2.1)-(2.3)] together with the commutation relations 
[equations (1.8)-1.10)] de f ine  these generators. This viewpoint corresponds 
to the numerical applications performed (de Prunelr, 1992; Ivanov and de 
Prunelr, 1994) for the helium atom. The remaining part of this section 
relies only upon the definitions given by equations (2.1)-(2.6) and equations 
(1.8)-(1.10). Thus, in this section, we ignore completely the explicit expres- 
sion of the replaced operator in terms of r and p and study the replaced 
problem p e r  se: We start from an abstract separable Hilbert space defined 
by the orthonormal basis In, l, m) and operators defined in this Hilbert space 
by their action in this basis. 
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The spectral properties of the operator [see equation (1.21)] 

p-~ _ exp(213) [Xl + 1] (2.8) 
2 

with 

1 1 
Xl ~- ~ 3  t, V~3 (2.9) 

are studied in Appendix A. It is shown that XL is bounded, has norm unity, 
and that its spectrum comprises only a continuous spectrum consisting of 
the interval [ - 1 ,  1]. Therefore p2 is bounded, has norm exp(213), and has 
only a continuous spectrum consisting of the interval [0, exp(213)]. As p2 is 
bounded (for finite 13 values), it is natural to look for a compact momentum 
space, a surface of a four-dimensional space. 

We consider a four-dimensional Euclidean space, with orthonormal coor- 
dinates -tr~ = "tr% ~ = 1-4, and realize the 0(4) algebra by rotations in the 
six planes associated with this coordinate system: 

lj = --ieJkt'rrk ~ (2.10) 
19TI "l 

a o ) exp(13) 
a~ = - i ~rj 07r4 "rl'4 ~ - 2 rj (2.11) 

Latin indices run from 1 to 3. It is well known (see, e.g., Vilenkin and 
~=, (~r~) 2 Klimyk, 1993) that a complete system of functions on the sphere 4 

= 1 is provided by the following orthonormal functions: 

(n _ / _  l ) ! ] l  n 
tp.a,~ = ( -2 i )q!  n (n + l)! J (2.12) 

• Ct,+~-t(cos(03)) sint(03) 4v~YT'(02, 01) 

F(m + �89 [ ( 2 / +  I ) ( l -  m)!] In 
rz'(02, 0,) = (-1)m2 m r (u2)  L 4-~ (l "~ m)!J 

X CT'__+~n(cos(02)) sinm(02) exp(irn01) (2.13) 

with C~ the Gegenbauer polynomials defined by (1 - 2tx + x2) -x = 
ET=0 CX,,(t) x" and the spherical coordinates defined by 

'n'l = sin(03) sin(02) cos(00 (2.14) 

"rr2 = sin(03) sin(0a) sin(00 (2.15) 



0(4,2) Operator Replacements 1305 

7r3 = sin(03) cos(02) (2.16) 

1"1" 4 = cos(03) (2.17) 

with 0 <-- 0~ < 2"rr, 0 -< Ok --< "rr, k = 2, 3. The orthonormality condition reads 

' I ? f :  2,11.2 dO i sin(02) dO2 

Io " • sin2(e3) dO3 ~p~, r. ,,,'~P~.t.,. = 6n~'gn'6,,m' (2.18) 

Equations (2.10), (2.11) give 

il+ = i exp(+_iO]) tan(02) 00--~ - 

0 sin(02) 0 
ia3 = -cos(02)  + - -  (2.20) 

003 tan(03) 0302 

The choice for the phase convention in equations (2.12), (2.13) is consistent 
with those of  equations (2.1), (2.3): 

l +_ q~n,l, m = c( + m,  l)q~n.t,m+ I (2.2 I) 

a3q~n.t, m = [(/ -- m ) ( l  + m)]U2d'lq~.,t_l,. ,  

+ [ ( l - m  + l ) ( l + m  + t/2 ,, 1)] dt+lq~..t+l,m (2.22) 

Moreover (Vilenkin and Klimyk, 1993) 

, r c ( l , - . )  
c~ = 2 [ x / n ( n  - 1) q0,-t,t.,, + 

c(l ,  n )  ] 
. 4 ~  + 1) q~,,+U,m (2.23) 

Comparin~ equation (2.23) with equations (2.2), (2.7), (2.9), one deduces 
that XI [equation (2.9)] can be identified with cos(03) if the action of  t 3 on 
the basis functions is defined according to equation (2.7) by 

t3~p.,t,m = nq~,u,m (2.24) 

Equation (2.24) is in fact a consequence of equations (2.19), (2.20) since 
the definitions (1.1), (1.2), (1.7) lead to the relation F3 = a . a  + !.1 + 1 and 
since the functions q~n.t.m satisfy the differential equation (Vilenkin and Kli- 
myk, 1993) [ a . a  + I.I + l]q~n.t, m = n2q~,,,t.,,,. The explicit form of this 
differential equation is given by equation (2.36) below. From equation (2.8) 
one obtains 
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p"i(__[3) - exp(213) [1 + cos(03)] = exp(13) cos (2.25) 
2 

Now, the commutation relations [see equation (1.25)] 2ipj(13) = [rj_ ~] ,  
1 --< j --< 3, and equations (2.11) and (2.25) yield 

~ _ _  [ ] _ e x p ( 1 3 )  exp(13) O ~ l + "rr4 (2.26) 
PJ - 2 "rrj O,rr----- q - ~r4 0"rrJ' -~ "trj 

with the rrj defined by equations (2.14)-(2.17). 
From the relation 

1 1 1 
exp(iat3) -~3 tx ~ 3  exp(-iat3) = ~ [cos(a) tt (2.27) 

1 
- sin(a) t2] r -  

4t3 

one further deduces 

~(13) _ exp(13) (_i)t3 cos(03 ) (i),3 (2.28) 
2 

Finally, from the commutation [see equation (1.25)] 

- -  

i = [rj, pr] 

one obtains 

(~--~Jr)(13)=(--i)t3"rfj(i)t3 (2.29) 

One should not be surprised that the right-hand side of equation (2.29) does 
not exhibit an explicit 13 dependence since this dependence does not appear 
in /3 as explained at the beginning of this section, and as will be further 
discussed for a specific example at the end of this section. 

To summarize, it has been shown that the operator replacements given 
by equations (1.18)-(1.23) are equivalent to the following (j = 1, 2, 3): 

r ~ 2 exp(-13) t3 ---- F'(13) (2.30) 

r j - - )2 iexp(-13)  -rrj~---~4- 'rr4~ - r j ( 13 )  (2.31) 
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exp(13) 
pj --) ~ -rrj -= pj (13) (2.32) 

p2 ___) exp(213) (1 + 7r4) -= ~(13) (2.33) 
2 

(2.34) 

exp(13) 
Pr --) ~ (-i)'3"rr4(i) '3 ~ ~(13) (2.35) 

with 7rj defined by equations (2.14)-(2.17) and t 3 defined by equation (2.24). 
A simple expression for t 3 in terms of the angles 0j seems difficult to 

obtain. From the differential equation (Vilenkin and Klimyk 1993) 

one has 

l,, ] 
+ tan(03----~ d0---3 sin2(03-~ + n2 - 1 q~n,t,m = 0 (2.36) 

t]3 = 1 -- ~ + tan(03-~ d03 sin2(03)J (2.37) 

The geometrical interpretation of  the operator replacements is now clear: 
The three-dimensional Euclidean momentum space is replaced by a three- 
dimensional sphere of  a four-dimensional Euclidean space, with radius 
[exp(13)]/2. The replaced coordinate operators [equation (2.31)] are the genera- 
tors of  rotations in the planes containing the fourth dimension. The first three 
Cartesian coordinates of  a point of  this sphere correspond to the replaced 
momentum coordinates. The fourth one is related to the replaced square 
momentum through equation (2.33). From the relations 

(2.38) 

one sees that the usual relation between the kinetic energy and the momentum 
is not satisfied. For finite momenta, this relation is, however, satisfied in the 
physical limit where 13 --) +oo. In this limit, equation (2.33) shows indeed 
that 03 must go to "rr in order that the kinetic term remain finite. Thus, for 
03 = "rr - ~, one has, to second order in e, 
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More specifically, in the limit of infinite radius of the sphere, a neighborhood 
of finite volume of the point characterized by 03 = -rr becomes indistinguish- 
able from a neighborhood of this point belonging to the plane tangent at this 
point to the sphere and thus the Euclidean geometry is recovered. 

Several properties of the replaced operators are transparent from the 
realization given by equations (2.30)-(2.35). For example, the components 
of the replaced momentum [equation (2.32)] and of the replaced radial 
momentum [equation (2.35)] have a norm equal to [exp(13)]/2. The replaced 
square momentum operator [equation (2.33)] has a norm equal to exp(213), 
as shown previously (Appendix A), and the components of the replaced 
coordinates position unit vector [equation (2.34)] have a norm equal to unity. 

Some other properties, however, are not immediate. For example, we 
believe it is instructive to give the reasons that the scalar product 

S-~(~)(~)(~)(13)=(-i)'3sin2(03)(i) t3 
should act as the unit operator when 13 ~ +oo. Let O(0j) be a function 
describing a particle with finite mean value of kinetic energy. Then, as 
explained above, this function should concentrate in a near vicinity of the 
direction 03 = "rr as 13 ~ + ~ .  It is clear that S can be considered to act as 
the unit operator on this function if it can be shown that the function 
(i)'3t~(0j) is concentrated in a near vicinity of the direction 03 = at/2. We 
briefly sketch the qualitative arguments. For the sake of definiteness, we 
suppose that the function t~(0j) belongs to a subspace of  fixed values of l, 
m. It is then proportional [see equation (2.12)] to the function 

f(03) = ~ cff.(03) 
t l  

with 

f,(03) ------- [ (n - l - 1)[-] I/2 /+1 
n ~n ~- 1)i J C'_,_,(cos(03))sin'(03) 

For 03 = -rr - e ,  e > 0 arbitrarily small, the fn functions alternate in sign 
according to the parity of n. Thus the sign of the coefficients c, should also 
alternate, as n increases by unit steps, if constructive interferences occur in 
the vicinity of 03 = ar (for simplicity we assume that the c, are real). Let us 
now consider the function 
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(i)t3f(O3) = ~ ( -  1)kc2gf2k(03) -t- i ( -  1)kC2k+tf2k+t(03 ) 
k 

One sees that the constructive interferences of  ~(0y) at the point 03 = "rr are 
converted into destructive interferences for the function (i)t3d~(Oj) at  the same 
point. At the point 03 = -rr/2, the functions f,, present successively, as n 
increases by unit steps, a zero, a maximum, a zero (with an alternating slope), 
and a minimum. From these considerations one can infer that the destructive 
interferences of the function O(0j) at this point are converted into constructive 
interferences for the function (i)t3t~(Oj) in the vicinity of the same point. The 
reason that the conversion of  destructive into constructive interferences should 
not occur in regions different from a neighborhood of  03 = -tr/2 is that the 
point 03 = 'rr/2 is the only fixed point (with respect to n) for which If,, I has 
an extremum [except of course the points 03 = 0, "rr; sincef~(03) is of  constant 
sign (with respect to n) near the point 03 = 0, it is seen that (i)'3~(0j) also 
presents destructive interferences near this point]. The qualitative discussion 
above does not pretend to rigor, but illustrates that a proper comprehension 
of the new realization of  operator replacements may require the explicit form 
of the basis functions [equation (2.12)]. 

3. C O N C L U D I N G  R E M A R K S  

The correspondence between initial operators and replaced operators 
induces a correspondence between initial vectors and replaced vectors: the 
eigenvectors of commuting initial operators are replaced by the eigenvectors 
of commuting replaced operators. This is illustrated in Appendix B for the 
improper eigenvectors of kinetic energy in a subspace of  fixed angular 
momentum and for the improper eigenvectors of r in the same subspace. 

An important property of  the 0(4, 2) operator replacement method is 
that the replaced kinetic operator can then be expressed as exp(213) multiplied 
by a bounded operator. For the nonrelativistic helium Hamiltonian, the 
replaced kinetic term is dominated, in the limit where 13 ---> -oo, by the 
replaced potential energy term. Hence the problem becomes exactly solvable 
in this limit because a basis which diagonalizes these replaced potential 
energy terms can be determined (for the singlet S symmetry, some eigenvalues 
of the replaced potential energy are infinite and therefore the present method 
is not directly applicable) (Ivanov and de Prunel6, 1994). Then perturbation 
expansion with respect to the nondiagonal part of the replaced kinetic operator 
can be carried out. It is the above-mentioned boundness properties that ensure 
(Rellich, 1969; Kato, 1984) a nonzero radius of convergence for the Rayleigh 
Schr6dinger series in power of  exp(13), and thus allow analytic continuation 
from the limit 13 --> -oo to the physical limit 13 ---> +oo to be performed 
(Ivanov and de Prunel6, 1994). 
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Concerning the equivalence of the spectrum of an initial Hamiltonian 
with the limit of the spectrum of the replaced Hamiltonian when 13 ---> +~ ,  
the present situation is the following: The equivalence is proved for an initial 
hydrogenic Hamiltonian by solving explicitly the replaced equation for every 
[3 value (de Prunelr, 1992). The eigenvalues are 

exp([3) [exp([3) - x/exp(2[3) + (2Z/n) 2] 
4 

and thus tend to the hydrogenic ones, (-1/2)(Z/n) 2 (Z the nuclear charge) 
when [3 --> +oo. The replacements used for that case are given by equations 
(1.18) and (1.21). The numerical results obtained by de Prunel6 (1992) and 
Ivanov and de Prunel6 (1994) indicate that this equivalence should be true 
for a two-electron atomic Hamiltonian. (The generalization of the method to 
the particular case of singlet S symmetry is now in progress.) The replacements 
used for that case are given by equations (1.18), (1.19), and (1.21). More 
accurate numerical results would allow one to depart from the infinite-nuclear- 
mass approximation and thus the replacement (1.20) could also be tested. 
The determination of the necessary and sufficient conditions to be satisfied 
by the initial Hamiltonian for the equivalence between the two spectra is an 
open problem. 

An essential property of the method of operator replacements is that 
the replaced momentum space becomes compact, specifically a sphere. The 
expansion of an arbitrary square-integrable function on this space, which is 
equivalent to S0(4)1S0(3) as a homogeneous space, involves therefore only 
discrete summation over spherical functions. Such a discrete summation is 
the analog of the Fourier integral in the Euclidean case. This illustrates a 
connection arising between compact momentum space and the existence of 
a fundamental length scale. In the present model, this connection is given 
by equation (B.5a). An interesting question is whether such a kind of connec- 
tion has something to do with the description of the real world at a more 
fundamental level. 

APPENDIX A. SPECTRAL PROPERTIES OF THE REPLACED 
KINETIC ENERGY OPERATOR 

Equation (2.8) shows that the replaced kinetic energy operator p2/(2m) 
is simply related to the operator X~ defined by equation (2.9). This appendix 
is devoted to the study of the spectral properties of the operator X~: 

Xt----~3t, ~ 3 -  ~ t+---~3+--~33t_ - - ~ { X +  +X_}  (A.1) 

1 
IIX, II <- ~ {llX+ II + IIX-II} (m.2) 
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IIX+ll = s u p  IIX§ (A.3) 
Ilvll=l 

As the operators t j , j  = 1, 2, 3, all commute with the angular momentum 
operator I, one can work in a subspace spanned by the vectors In, l, m) with 
fixed l, rn values. We then introduce the notations k -- n - l - 1, ek -- In 
= k + l + 1, l, m). Now, if v = Ek=_-0 vl~e k with E,=_-0 I vt.12 = 1, one has 
IIS§ 2 = ~:~==0 I vkakl 2 with 

c ( l , k  + l +  1) 
ak = [(k + l + 2)(k + l + 1)] I/2 (A.4) 

and c(a, b) defined by equation (2.4). The relation 

(Otk)2 _ (ak_l) 2 = 2l(l + 1) (A.5) 
( k +  l -  l ) ( k + l ) ( k +  l +  1) 

shows that otk is an increasing sequence for l :/= 0 and a constant sequence 
for l = 0. Moreover, lim,__~ a t  = 1, and thus IIX§ -< 1. One shows by the 
same method that IIX-II -< I. Therefore IIX~ II -< 1. To show that the norm is 
equal to unity, one considers the sequence of  vectors xj of  norm unity, x i = 
(J + 1) -I/2 ~,~J=j ek; we have 

1 
IlXtxjII2 4(j  + 1) ~ + oL~ek+l 

- 4( j+ l  1) o t j _ l e j _  I --I- ot~ej -F o t2 j_ le2j  --}- OL2je2j+l 

2j-I ak-i)ek 2 
+ E (o,~ + 

k=j+ 1 

1 2j-I 1 2j-l 
- -  ~ le~k + etk_l 12 > - -  ~ 12e-k-ll 2 > 
4 ( j  + 1) k=j'--~, 4 ( j  + 1) k=j+, 

2j- I  
1 ~ 41otj12 = letjl2 j -- 1 

> . 4 ( j  + 1) k=j+m j + I 

Thus limj_~dlX~xjll 2 = 1 and therefore the norm of Xl is equal to unity. [One 
shows by the same method that the norm of  X2 - ( 1 / ~ 3 ) t 2 ( 1 / ~ 3 )  is also 
equal to unity.] This allows us to conclude (see, e.g., Roman, 1975) that the 
spectrum lies inside a circle of  radius unity. Taking into account both 
boundness and Hermitian properties, one deduces (see, e.g., Roman, 1975) 
in particular that the spectrum must belong to the real axis, and that the 
residual spectrum is empty. To determine further the spectrum in the interval 
[ - 1 ,  + 1], it is most convenient to make the connection with orthogonal 
polynomials. For that we first suppose that there exists one eigenvector of 
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Xt, to be denoted Ix, l, rn), with eigenvalue x: Xi Ix, l, m) = xlx,  l, m). 
Inserting the expansion 

Ix, l, m) = ~ P~-l-I(x)ln, 1, m) (A.6) 
n = / + l  

into the eigenvalue equation, one obtains the following three-term recursion 
relation for the coefficients P~.(x): 

with 

bk-t PIk-i(x) -- xPt~(x) + bkPtk+l(x) = 0 (A.7) 

with 

j~(x) = 1 22/+ 1 (l + 1)(/!) 2 (1 --x2) l+l/2 (A.11) 
rr (2l + 1)! 

To summarize, the spectrum of X~ consists only of a continuous spectrum 
and is the interval [ - 1 ,  1]. The expression of X~ in term of its associated 
spectral resolution of the identity is XI = f x dE(x) with the j, k matrix 
element of E given by 

bk = otd2 (A.8) 

Equation (A.7) together with the convention P~o(X) = 1 uniquely determine 
the polynomials { Ptk(X) } since b_ I = 0. 

It is known (see, e.g., Dombrowski, 1990) that if bk > 0, there exists a 
measure/x with respect to which the polynomials {Pk} are orthogonal. More- 
over, if E (l/bk) = ~, the measure is unique. This measure also gives the 
spectral measure of the operator X~. Finally, as the sequence bk is monotone 
increasing and converges to 1/2, it can be deduced (Dombrowski, 1990) that 
there is no eigenvalue in the interval [ -  1, 1] which must be in the spectrum. 
It remains to determine the measure. This can be done most simply by 
comparing the three-term recursion relation (A.7) with the known recursion 
relations of the Gegenbauer (also called ultraspherical) polynomials. One 
obtains 

pt(x ) = [(2l + 1)! k! (k + 1 + 1)] 1/2 

[ ~ +  l)(k + 21 + li! J Ctk+l(X) (A.9) 

The following orthonormalization condition holds: 

I_ Ptk'(X)pI(x)f(x) ~k'k (A.10) dx 
1 
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Ik  
E j , , ( •  = P~(x)P'~(x)f,(x) ax 

-I 

One has both the generalized orthogonality and closure relations 

( x ' ,  l, m i x ,  l, m )  - ~ (x  - x ' )  
ft(x) 

fi 1 = dx3~(x) Ix, l, m ) ( x ,  l, m l 
I 

which hold inside a subspace with l, m fixed, and for - 1  -< x -< 1. 

(A.12) 

(A.13) 

APPENDIX B. CORRESPONDENCE BETWEEN MATRIX 
ELEMENTS 

This appendix shows by explicit calculation that the quantum result 

(r, l, m l p ,  l, rn) = i I J t+ l /2 ( rp )  , ~  (B.1) 

with J the regular Bessel function as defined by Abramowitz and Stegun 
(1965), is preserved by the method of o(4,2) operator replacement in the 
limit where [3 ---> +oo. Equation (B.1) corresponds to the following choice 
of normalization for the improper eigenvectors of r, P in a subspace with 
fixed l, m: 

fo o l = r E d r  I r, l, m ) ( r ,  l, m l (B.2a) 

o 

1 = p2 d p  Ip, l, m ) ( p ,  1, m l (B.2b) 

(r, l, m l r ' ,  l, rn) - ~ ( r  - r ' )  (B.3a) 
r 2 

(p, l, m l p ' ,  l, m )  - ~ ( p  - p ' )  (B.3b) p2 

From equations (1.21) and (A.6), one has the correspondence between 
the elements of the spectra: 

p2 _ exp(2[3) (x + 1) (B.4a) 
2 

Comparison of equation (B.3b) with equation (A. 12) gives 
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exp(13) - -  Ix, l, m) (B.4b) 

The arbitrary phase factor i t is introduced for future convenience. In the same 
way, from equations (1.18) and (2.7), one has the correspondence 

r = 2 exp ( -~ )  n (B.5a) 

This equation illustrates that for finite [3 values, the continuous variation of 
r is replaced by a discrete one, namely by steps of 2 exp ( -6 ) .  Comparison 
of equation (B.2a) with the closure relation 1 = N~=t+ l I n, l, m)(n, l, m I gives 

. 3 / 2  

I r ' l ' m ) " ' > ( - - l ) t + l - ' ~ ( ~ )  hi-In ' I 'm)  (B.5b) 

The phase factor ( - 1 )  l+~-" has been introduced in order to correspond to 
the phase convention in equation (B.I), as will be seen in equation (B.II)  
below. Relations (B.4) and (B.5) allow us to study the replacement of the 
scalar product given by equation (B. 1 ), especially in the physical limit where 
13 ---> +co. As r and p are considered to be fixed, equations (B.4a) and (B5a) 
can be used to eliminate 13, leading to a relation between x, p, r, n: 

x =  - 1  + ~  (B.6) 

Equation (B.5a) shows that n is determined by r, 13. We shall now take n as 
independent variable and the limit of infinite 13 becomes equivalent to the 
limit of infinite n. From equations (B.4), (B.5), and (A.6) 

1 (r, l, mlp,  l, rn) ----> it( - l ) t + l - n _ _ _  Pl_l_|_--  I L rpn j \ ~ (B.7) 

From the relations between Jacobi and Gegenbauer polynomials (see, e.g., 
Abramowitz and Stegun, 1965) 

p,~_ll2.,~_l/Z(Z) = F(2ct)F(ct + n + 1/2) C~(z) (B.8) 
F(2ct + n)F(a + 1/2) 

and from the relations (Abramowitz and Stegun, 1965) 

C~(z) = ( -  1)nC~(--Z) 

lim--I p~.~ 1 - x2 = J~(x) 
n - - . ~  n ~ 

one finally obtains after some calculation 

(B.9) 

(B.10) 
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lim il(-l)t+1-n ( -1  + _ ~ ( r p l n )  ) e ~ - t  t - 1  + 1 
. - ~  r p n  3 - 

- i t Jl+I/2(rp) 
(B.II) 

APPENDIX C. RELATION WITH CONFORMAL 
TRANSFORMATIONS IN THREE- 
DIMENSIONAL MOMENTUM SPACE 

The geometrical interpretation of the ten operators I, t2, a(0), b(0) span- 
ning an o(4,1) Lie algebra requires first that we recall some facts about 
conformal transformations [equations (C.1)-(C.23) below]. [We consider 
here first the case 13 = 0, since the case of arbitrary 13 is easily deduced 
equation (1.11).] A conformal transformation is a transformation which pre- 
serves angles. A formulation of this property can be given within the general 
mathematical framework of pseudo-Riemannian manifolds M, M' with met- 
rics G, G' (see, e.g., Todorov, 1986). Briefly, the differentiable mapping ~b 
from M to M' is conformal if the corresponding tangent map d~b preserves 
the angles. If pi  is a coordinate basis in a neighborhood of a point P of M, 
this means 

a'(df~(+), df~(+) : ~'~2(p)a(.~i s O~pj) (C.l) 

if p,i = dpi(p) denotes a coordinate basis of the image dp(P) of the point P, 
one has 

ddp ap" ap'J 

and therefore ~ 0) 
ap" apJ  ,ap = " '  (c.2) 

The positive function I')2(P) is called the conforrnal factor. In the simplest 
case to be considered here, the manifold is flat and can be covered by a 
single orthonormal coordinate system pi, 

i ,  ~ p j  - -  Giy (C.3) 

The Gii form a diagonal matrice of order n, 
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1_ if 1 <- i ~ p 
G u =  1 if p +  l < - i < - n  (C.4) 

The conformal transformations in such an n-dimensional pseudo-Euclid- 
ean space M, G(p, q) (p + q = n) can conveniently be constructed by 
considering the orthogonal transformations in a (n + 2)-dimensional pseudo- 
Euclidean space &, ~3(p + 1, q + 1) according to the following procedure (see, 
e.g., Mural, 1954; Kastrup, 1962; Todorov, 1986). An orthogonal coordinate 
system of al, t will be denoted by "q~', 

~ ( 0  0 )  07q = (c.5) 

and 

G(,+l)(,+l) = 1 = -G(n+2)(n+2 ) (C.6) 

We take the convention that Greek indices vary between 1 and n + 2, Latin 
indices between 1 and n. The equations 

Xl i =  Kp i (C.7) 

K 
"q"+ ~ = ~ (1 - pip J) (C.8) 

K 
.q,,+2 = 2 (1 + pjpJ) (C.9) 

define, for arbitrary given values of K, p", a point of a cone through the origin 
of the space ~ :  

G,~a'q'~q Is = 0 (C.10) 

One can easily compute from equations (A3.7)-(A3.9) the value of the metric 
~d of & on the image by the tangent map of the partial derivatives with 
respect to pi, p j, the other pk and ~ being fixed: 

Op i Op j \O.qa, OTqf ~ = K2Gij ( C . l  I )  

Thus, for arbitrary fixed value of K, equations (C.7)-(C.9) define a conformal 
mapping from the space M into the cone of the space N. An orthogonal 
transformation in the space N is now introduced: 

"q"~ = A~'q~ (C.12) 

with the orthogonality conditions 
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G,~ = A~A g~ ~,-,~ (C. 13) 

The orthogonality conditions ensure that the point P' of coordinates xl ''~ 
satisfies equation (C.10), i.e., also belongs to the cone passing through the 
origin of the space At. Therefore equations (C.12), (C.7)-(C.9) in turn 
uniquely determine new values K', p"  (i = 1 to n) which also satisfy equa- 
tion (C.I 1): 

0 'o _0, 0, ) 
rgp 'i O f f ;  \O 'q  " '  O~q 13 = K 'ZGi j  (C. 14) 

The explicit expression of p , i  in terms of the p J  is 

with 

P" T l l n + l  -.{.- T l t n + 2  K I 

l i lV, , ) 
= - -  A n + 2  - -  K' A}pJ + A/+l 2 (C. 15a) 

rdK' = {[A~ '+' + AT+2]p / + [A."+I + A~+~Z](l - p J p j ) / 2  

r A . + I . + z p ; p j ) / 2  } - I + L,-.+2 + A.+/](I + (C.15b) 

Comparing equations (C. 11) and (C. 14), one deduces that the transforma- 
tion described by equations (C.15a), (C.15b) is conformal. The conformal 
factor is given by (K/K') 2. From now on, only the three-dimensional Euclidean 
case (n = 3, Gml = G2z = G33 = l )  will be considered. Nevertheless, the 
covariant (contravariant) characters and the summation convention will be 
maintained for the sake of generality and convenience. 

The relation between conformal transformations and the operators I, tz, 
a(0), b(0) spanning an o(4,1) algebra originates from the consideration of 
infinitesimal con.formal transformations: 

p,i  = pi -b ehn(p) + O(e 2) (C. 16) 

f~(p) = 1 + ef(p) + O(C) (C.17) 

Inserting the above equations into equation (C. 1), one obtains the following 
solutions (see, e.g., Todorov, 1986): 

I (  = 'r i + to}pJ + B p  ~ - 2 X J p j p  i + xipjp j (C. 18) 

with to} = -to;,." (for the present case of Euclidean space, upper and lower 
components are equal). An arbitrary function F(p) therefore satisfies, to first 
order in e, 
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F(p ' )  = F(p) + ~qF(p) (C.19) 

i e~to~lk + ~d + x J k j  (C.20) q = T J o j  - -  -~ 

where lk is defined by equation (1.2), e denotes the completely antisymmetric 
tensor with e 123 = 1, and 

0 
aj - ~ (c.21) 

opJ 

d =- pJOj (C.22) 

ky -- p*pkOj - 2pf l  (C.23) 

The generators 0j, I, d, k are the generators of translations, rotations, global 
scale change, and special conformal transformations, respectively. The corres- 
ponding infinitesimal generators in the space At are easily found [see equations 
(C.7)-(C.9)] to be 

Lj5 - Lja for 0j 

/ js + t.j, for 

L54 for d 

where L ~  -- "% 0/0~ ~ - xl~ 0/0,q~. The relations between the operators of  
equations (1.1)-(1.4) and the conformal generators are therefore 

- i t2  = d + 2 (C.24) 

-iaj(O) = �89 + (kj - 4pj)] (C.25) 

-ibj(O) = t[oj  + (kj - 4pj)]  (C.26) 

and of  course ! belongs to both groups. The occurrence of  the terms 2 in 
equation (C.24) and 4pj in equations (C.25) and (C.26) does not allow us to 
interpret these operators as generators of  conformal transformations. It is 
seen, however, that if one changes d into d + 2 and simultaneously k into 
k - 4p [see equation (C.23)], then d becomes - i t2 ,  �89  r + kj) becomes 
-iaj{O), �89 + kj) becomes -ibj(O), whereas ! remains unchanged. (It should 
be noticed that the commutation relations are not only invariant under the 
change d into d + 2, but under any changes d into d + c, where c is any 
number.) As d is the generator of  global change of scale, this suggests that 
the operator 

e x p ( - i 0  {'rJ[bj(0) at(0)] t k i - + -f#ii to)lk + ~t2 + xJ[bj(O) + aj(O)]})  

= exp[O(q + 28 - 4XJpj)] 
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acts on a dimensionless function F(p) as the conformal transformation 
exp{ 0q} would act on a function with dimension [momentum]-2. Specifically, 
one expects that 

{exp[0(q + 2g - 4XJpj)]f}(p) = ~- f (p ' )  (C.27) 

where p', K/K' are given by equations (C.15a), (C.15b) with the matrix A 
corresponding to the orthogonal transformation in At space associated with 
the operators of conformal transformation exp{0q} in Euclidean three-dimen- 
sional space. In order to emphasize the dependence with respect to the real 
variable 0, we shall write p(0) in place of p' in the following. 

Equation (C.27) is the essential result of this appendix. Proof of equation 
(C.27) amounts to proving that 

exp[0(q + 2~ - 4• exp{-0q} = (K/K') 2 (C.28) 

The left-hand side of this equation, to be denoted ~E(0), satisfies the differen- 
tial equation 

d~(0) 
dO - exp[0(q + 2~ - 4X/pj)] 2(~ - 2k2pj) exp{-0q} (C.29) 

= ~(0)218 - 2xJpj(0)] 

Now the right-hand side of equation (C.28), the conformal factor, can be 
expressed according to equation (C.2) as 

= = X 2 

k=t LOPJ(O)J (C.30) 

with arbitraryj value between 1 and 3. Using the relation [see equation (C. 18)] 

Opk(O) = . ~  + (dkpj(O) + 8p k + xkpJ(O)pj(O) -- 2~pj(O)pk(O) (C.31) 
O0 

one deduces after a simple calculation that 

d~'~2(O) 
- ~2(0)2[~ - 2• 

dO 
(C.32) 

Thus both members of equation (C.28) satisfy the same first-order differential 
equation, and, since they are obviously equal for 0 = 0, equation (C.28) 
is proved. 

Equation (C.27) will now be illustrated for the simple case where q 
[equation (C.20)] is simply equal to k~ - 0~. One obtains 
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{exp[- /0at (0)]F}(p)  

= [D(p)]_2F(P I cos(O)-�89 sin(0, ' D(p,'p2 D-~t73 )) 
- [D(p)]-2F(p ') (C.33) 

D(p) -= p '  sin(0) + �89 - pJpj) cos(0) + �89 + pJpj) (C.34) 

The case of arbitrary value of 13 is then easily deduced from equation (1.11) 
and the relation 

{exp(i13t2) F} (p) = e x p ( -  213) F ( e x p ( -  13)p) (C.35) 

Specifically, 

{exp[-i0a~(13)] F}(p) 

= {exp(i13t2) exp[ - i0a t (0) ]  exp(-i13t2)} F}(p) 

= e x p ( -  213) { exp[ - ion l(0) e x p ( -  i13t2)] F} [exp( - 13) p] 

= [D(exp(-13) p)]-2{exp[-13(2 + it2)] F}[exp(-13) p ']  

so that finally 

{exp[ -  i0a~(13)] F}(p) 

= [D(exp(-  13)p)] -2 

• F(.p I cos(0) -�89 - exp(-13)p/pj] sin(0) 
o   -TbS 

p2 p3 ) 
D( exp ( -  [3)p) ' D ( e x p ( -  13)p) (C.36) 

In particular, one verifies from equation (C.36) that, in the limit 13 ---> +0% 
the replacement given by equation (1.19) for r corresponds indeed to the 
translation operator in momentum space: 

lim {exp[i'r2 exp(-13) al(13)]F}(p) = F(p I + "r, p2, p3) (C.37) 
1~----~ +oo 
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